IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6933d10.1038_nature01555.html
   My bibliography  Save this article

Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2

Author

Listed:
  • Aidong Han

    (University of Colorado at Boulder)

  • Fan Pan

    (Johns Hopkins University School of Medicine)

  • James C. Stroud

    (University of Colorado at Boulder)

  • Hong-Duk Youn

    (Johns Hopkins University School of Medicine)

  • Jun O. Liu

    (Johns Hopkins University School of Medicine)

  • Lin Chen

    (University of Colorado at Boulder)

Abstract

The myocyte enhancer factor-2 (MEF2) family of transcription factors has important roles in the development and function of T cells, neuronal cells and muscle cells1,2,3. MEF2 is capable of repressing or activating transcription by association with a variety of co-repressors or co-activators in a calcium-dependent manner1,4,5. Transcriptional repression by MEF2 has attracted particular attention because of its potential role in hypertrophic responses of cardiomyocytes6. Several MEF2 co-repressors, such as Cabin1/Cain and class II histone deacetylases (HDACs), have been identified7,8,9,10,11,12. However, the molecular mechanism of their recruitment to specific promoters by MEF2 remains largely unknown. Here we report a crystal structure of the MADS-box/MEF2S domain of human MEF2B bound to a motif of the transcriptional co-repressor Cabin1 and DNA at 2.2 Å resolution. The crystal structure reveals a stably folded MEF2S domain on the surface of the MADS box. Cabin1 adopts an amphipathic α-helix to bind a hydrophobic groove on the MEF2S domain, forming a triple-helical interaction. Our studies of the ternary Cabin1/MEF2/DNA complex show a general mechanism by which MEF2 recruits transcriptional co-repressor Cabin1 and class II HDACs to specific DNA sites.

Suggested Citation

  • Aidong Han & Fan Pan & James C. Stroud & Hong-Duk Youn & Jun O. Liu & Lin Chen, 2003. "Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2," Nature, Nature, vol. 422(6933), pages 730-734, April.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6933:d:10.1038_nature01555
    DOI: 10.1038/nature01555
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01555
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanjiang Yu & Qiong Shen & Antony B. Holmes & Tongwei Mo & Anna Tosato & Rajesh Kumar Soni & Clarissa Corinaldesi & Sanjay Koul & Laura Pasqualucci & Shafinaz Hussein & Farhad Forouhar & Riccardo Da, 2024. "MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6933:d:10.1038_nature01555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.