Author
Abstract
Mutations in presenilin genes account for the majority of the cases of the familial form of Alzheimer's disease (FAD). Presenilin is essential for γ-secretase activity, a proteolytic activity involved in intramembrane cleavage of Notch and β-amyloid precursor protein (βAPP)1,2. Cleavage of βAPP by FAD mutant presenilin results in the overproduction of highly amyloidogenic amyloid β42 peptides3,4,5,6. γ-Secretase activity requires the formation of a stable, high-molecular-mass protein complex7,8,9,10,11 that, in addition to the endoproteolysed fragmented form of presenilin, contains essential cofactors including nicastrin12,13,14, APH-1 (refs 15–18) and PEN-2 (refs 16, 19). However, the role of each protein in complex formation and the generation of enzymatic activity is unclear. Here we show that Drosophila APH-1 (Aph-1) increases the stability of Drosophila presenilin (Psn) holoprotein in the complex. Depletion of PEN-2 by RNA interference prevents endoproteolysis of presenilin and promotes stabilization of the holoprotein in both Drosophila and mammalian cells, including primary neurons. Co-expression of Drosophila Pen-2 with Aph-1 and nicastrin increases the formation of Psn fragments as well as γ-secretase activity. Thus, APH-1 stabilizes the presenilin holoprotein in the complex, whereas PEN-2 is required for endoproteolytic processing of presenilin and conferring γ-secretase activity to the complex.
Suggested Citation
Nobumasa Takasugi & Taisuke Tomita & Ikuo Hayashi & Makiko Tsuruoka & Manabu Niimura & Yasuko Takahashi & Gopal Thinakaran & Takeshi Iwatsubo, 2003.
"The role of presenilin cofactors in the γ-secretase complex,"
Nature, Nature, vol. 422(6930), pages 438-441, March.
Handle:
RePEc:nat:nature:v:422:y:2003:i:6930:d:10.1038_nature01506
DOI: 10.1038/nature01506
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6930:d:10.1038_nature01506. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.