Author
Listed:
- Takashi Yoshino
(Okayama University)
- Michael J. Walter
(Okayama University)
- Tomoo Katsura
(Okayama University)
Abstract
The tungsten isotope composition of meteorites indicates that core formation in planetesimals occurred within a few million years of Solar System formation1,2. But core formation requires a mechanism for segregating metal, and the ‘wetting’ properties of molten iron alloy in an olivine-rich matrix is thought to preclude segregation by permeable flow unless the silicate itself is partially molten3,4,5. Excess liquid metal over a percolation threshold, however, can potentially create permeability in a solid matrix, thereby permitting segregation. Here we report the percolation threshold for molten iron–sulphur compounds of approximately 5 vol.% in solid olivine, based on electrical conductivity measurements made in situ at high pressure and temperature. We conclude that heating within planetesimals by decay of short-lived radionuclides can increase temperature sufficiently above the iron–sulphur melting point (∼1,000 °C) to trigger segregation of iron alloy by permeable flow within the short timeframe indicated by tungsten isotopes. We infer that planetesimals with radii greater than about 30 km and larger planetary embryos are expected to have formed cores very early, and these objects would have contained much of the mass in the terrestrial region of the protoplanetary nebula. The Earth and other terrestrial planets are likely therefore to have formed by accretion of previously differentiated planetesimals, and Earth's core may accordingly be viewed as a blended composite of pre-formed cores.
Suggested Citation
Takashi Yoshino & Michael J. Walter & Tomoo Katsura, 2003.
"Core formation in planetesimals triggered by permeable flow,"
Nature, Nature, vol. 422(6928), pages 154-157, March.
Handle:
RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01459
DOI: 10.1038/nature01459
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.