IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v421y2003i6922d10.1038_nature01372.html
   My bibliography  Save this article

A spatially organized representation of colour in macaque cortical area V2

Author

Listed:
  • Youping Xiao

    (University of Texas-Houston Medical School
    Mount Sinai School of Medicine)

  • Yi Wang

    (University of Texas-Houston Medical School)

  • Daniel J. Felleman

    (University of Texas-Houston Medical School)

Abstract

Neurons responding selectively to different colours have been found in various cortical areas in macaque monkeys1; however, little is known about whether and how the representation of colour is spatially organized in any cortical area. Cortical area V2 contains modules that respond preferentially to chromatic modulation, which are located in thin cytochrome oxidase stripes2,3,4. Here we show that within and beyond these modules, gratings of different colours produce activations that peak at different locations. Optical recording of intrinsic signals revealed that the peak regions of the responses to different colours were spatially organized in the same order as colour stimuli are arranged in the DIN (German standard colour chart) colour system. Nearby regions represented colours of a similar hue. We found that the set of colour-specific regions formed 0.07–0.32-mm-wide and approximately 1.3-mm long bands that varied in shape from linear to nearly circular. Our finding suggests that thin stripes in V2 contain functional maps where the colour of a stimulus is represented by the location of its response activation peak.

Suggested Citation

  • Youping Xiao & Yi Wang & Daniel J. Felleman, 2003. "A spatially organized representation of colour in macaque cortical area V2," Nature, Nature, vol. 421(6922), pages 535-539, January.
  • Handle: RePEc:nat:nature:v:421:y:2003:i:6922:d:10.1038_nature01372
    DOI: 10.1038/nature01372
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01372
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peichao Li & Anupam K. Garg & Li A. Zhang & Mohammad S. Rashid & Edward M. Callaway, 2022. "Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Katherine L. Hermann & Shridhar R. Singh & Isabelle A. Rosenthal & Dimitrios Pantazis & Bevil R. Conway, 2022. "Temporal dynamics of the neural representation of hue and luminance polarity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:421:y:2003:i:6922:d:10.1038_nature01372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.