Author
Listed:
- Robert N. Jinks
(Franklin and Marshall College)
- Tara L. Markley
(Franklin and Marshall College)
- Elizabeth E. Taylor
(Franklin and Marshall College)
- Gina Perovich
(University of Delaware)
- Ana I. Dittel
(University of Delaware)
- Charles E. Epifanio
(University of Delaware)
- Thomas W. Cronin
(University of Maryland Baltimore County)
Abstract
Hydrothermal vents along the mid-ocean ridges host ephemeral ecosystems of diverse endemic fauna including several crustacean species1,2,3,4, some of which undergo planktonic development as larvae up to 1,000 m above and 100 km away from the vents5,6. Little is known about the role of vision in the life history of vent fauna. Here we report that planktonic zoea larvae of the vent crab Bythograea thermydron possess image-forming compound eyes with a visual pigment sensitive to the blue light of mesopelagic waters. As they metamorphose and begin to descend to and settle at the vents, they lose their image-forming optics and develop high-sensitivity naked-retina eyes. The spectral absorbance of the visual pigment in these eyes shifts towards longer wavelengths from larva to postlarva to adult. This progressive visual metamorphosis trades imaging for increased sensitivity, and changes spectral sensitivity from the blue wavelengths of the larval environment towards the dim, longer wavelengths7 produced in the deeper bathypelagic vent environment of the adults. As hydrothermal vents produce light7, vision may supplement thermal and chemical senses to orient postlarval settlement at vent sites.
Suggested Citation
Robert N. Jinks & Tara L. Markley & Elizabeth E. Taylor & Gina Perovich & Ana I. Dittel & Charles E. Epifanio & Thomas W. Cronin, 2002.
"Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab,"
Nature, Nature, vol. 420(6911), pages 68-70, November.
Handle:
RePEc:nat:nature:v:420:y:2002:i:6911:d:10.1038_nature01144
DOI: 10.1038/nature01144
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:420:y:2002:i:6911:d:10.1038_nature01144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.