IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v419y2002i6907d10.1038_nature01084.html
   My bibliography  Save this article

SATB1 targets chromatin remodelling to regulate genes over long distances

Author

Listed:
  • Dag Yasui

    (University of California)

  • Masaru Miyano

    (University of California)

  • Shutao Cai

    (University of California)

  • Patrick Varga-Weisz

    (The Chart)

  • Terumi Kohwi-Shigematsu

    (University of California)

Abstract

Eukaryotic chromosomes are organized inside the nucleus in such a way that only a subset of the genome is expressed in any given cell type, but the details of this organization are largely unknown1,2,3. SATB1 (‘special AT-rich sequence binding 1’), a protein found predominantly in thymocytes4, regulates genes by folding chromatin into loop domains, tethering specialized DNA elements to an SATB1 network structure5. Ablation of SATB1 by gene targeting results in temporal and spatial mis-expression of numerous genes and arrested T-cell development, suggesting that SATB1 is a cell-type specific global gene regulator6. Here we show that SATB1 targets chromatin remodelling to the IL-2Rα (‘interleukin-2 receptor α’) gene, which is ectopically transcribed in SATB1 null thymocytes. SATB1 recruits the histone deacetylase contained in the NURD chromatin remodelling complex to a SATB1-bound site in the IL-2Rα locus, and mediates the specific deacetylation of histones in a large domain within the locus. SATB1 also targets ACF1 and ISWI, subunits of CHRAC and ACF nucleosome mobilizing complexes, to this specific site and regulates nucleosome positioning over seven kilobases. SATB1 defines a class of transcriptional regulators that function as a ‘landing platform’ for several chromatin remodelling enzymes and hence regulate large chromatin domains.

Suggested Citation

  • Dag Yasui & Masaru Miyano & Shutao Cai & Patrick Varga-Weisz & Terumi Kohwi-Shigematsu, 2002. "SATB1 targets chromatin remodelling to regulate genes over long distances," Nature, Nature, vol. 419(6907), pages 641-645, October.
  • Handle: RePEc:nat:nature:v:419:y:2002:i:6907:d:10.1038_nature01084
    DOI: 10.1038/nature01084
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01084
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akkelies E Dijkstra & Joanna Smolonska & Maarten van den Berge & Ciska Wijmenga & Pieter Zanen & Marjan A Luinge & Mathieu Platteel & Jan-Willem Lammers & Magnus Dahlback & Kerrie Tosh & Pieter S Hiem, 2014. "Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-13, April.
    2. Wei Gu & Xiaofeng Huang & Pratik N. P. Singh & Sanlan Li & Ying Lan & Min Deng & Lauretta A. Lacko & Jesus M. Gomez-Salinero & Shahin Rafii & Michael P. Verzi & Ramesh A. Shivdasani & Qiao Zhou, 2024. "A MTA2-SATB2 chromatin complex restrains colonic plasticity toward small intestine by retaining HNF4A at colonic chromatin," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:419:y:2002:i:6907:d:10.1038_nature01084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.