IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v419y2002i6907d10.1038_nature01050.html
   My bibliography  Save this article

Crystal structure of bacterial multidrug efflux transporter AcrB

Author

Listed:
  • Satoshi Murakami

    (Osaka University
    Osaka University
    CREST, Japan Science and Technology Corporation)

  • Ryosuke Nakashima

    (Osaka University)

  • Eiki Yamashita

    (Osaka University)

  • Akihito Yamaguchi

    (Osaka University
    Osaka University
    CREST, Japan Science and Technology Corporation)

Abstract

AcrB is a major multidrug exporter in Escherichia coli. It cooperates with a membrane fusion protein, AcrA, and an outer membrane channel, TolC. We have determined the crystal structure of AcrB at 3.5 Å resolution. Three AcrB protomers are organized as a homotrimer in the shape of a jellyfish. Each protomer is composed of a transmembrane region 50 Å thick and a 70 Å protruding headpiece. The top of the headpiece opens like a funnel, where TolC might directly dock into AcrB. A pore formed by three α-helices connects the funnel with a central cavity located at the bottom of the headpiece. The cavity has three vestibules at the side of the headpiece which lead into the periplasm. In the transmembrane region, each protomer has twelve transmembrane α-helices. The structure implies that substrates translocated from the cell interior through the transmembrane region and from the periplasm through the vestibules are collected in the central cavity and then actively transported through the pore into the TolC tunnel.

Suggested Citation

  • Satoshi Murakami & Ryosuke Nakashima & Eiki Yamashita & Akihito Yamaguchi, 2002. "Crystal structure of bacterial multidrug efflux transporter AcrB," Nature, Nature, vol. 419(6907), pages 587-593, October.
  • Handle: RePEc:nat:nature:v:419:y:2002:i:6907:d:10.1038_nature01050
    DOI: 10.1038/nature01050
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01050
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanqiu Li & Linlin Wang & Bradley M. Wierbowski & Mo Lu & Feitong Dong & Wenchen Liu & Sisi Li & Peiyi Wang & Adrian Salic & Xin Gong, 2021. "Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Alina Ornik-Cha & Julia Wilhelm & Jessica Kobylka & Hanno Sjuts & Attilio V. Vargiu & Giuliano Malloci & Julian Reitz & Anja Seybert & Achilleas S. Frangakis & Klaas M. Pos, 2021. "Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Jody L. Andersen & Gui-Xin He & Prathusha Kakarla & Ranjana KC & Sanath Kumar & Wazir Singh Lakra & Mun Mun Mukherjee & Indrika Ranaweera & Ugina Shrestha & Thuy Tran & Manuel F. Varela, 2015. "Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens," IJERPH, MDPI, vol. 12(2), pages 1-61, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:419:y:2002:i:6907:d:10.1038_nature01050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.