Author
Listed:
- Thomas Serwold
(University of California)
- Federico Gonzalez
(University of California)
- Jennifer Kim
(University of California)
- Richard Jacob
(University of California)
- Nilabh Shastri
(University of California)
Abstract
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells1. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown2,3. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm4,5 and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER)6,7,8. Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-γ. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.
Suggested Citation
Thomas Serwold & Federico Gonzalez & Jennifer Kim & Richard Jacob & Nilabh Shastri, 2002.
"ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum,"
Nature, Nature, vol. 419(6906), pages 480-483, October.
Handle:
RePEc:nat:nature:v:419:y:2002:i:6906:d:10.1038_nature01074
DOI: 10.1038/nature01074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:419:y:2002:i:6906:d:10.1038_nature01074. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.