IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v419y2002i6904d10.1038_nature01039.html
   My bibliography  Save this article

A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans

Author

Listed:
  • Liaoteng Wang

    (University of Wisconsin-Madison)

  • Christian R. Eckmann

    (University of Wisconsin-Madison)

  • Lisa C. Kadyk

    (University of Wisconsin-Madison
    Exelixis, Inc.)

  • Marvin Wickens

    (University of Wisconsin-Madison)

  • Judith Kimble

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

Abstract

Messenger RNA regulation is a critical mode of controlling gene expression. Regulation of mRNA stability and translation is linked to controls of poly(A) tail length1,2. Poly(A) lengthening can stabilize and translationally activate mRNAs, whereas poly(A) removal can trigger degradation and translational repression. Germline granules (for example, polar granules in flies, P granules in worms) are ribonucleoprotein particles implicated in translational control3. Here we report that the Caenorhabditis elegans gene gld-2, a regulator of mitosis/meiosis decision and other germline events4, encodes the catalytic moiety of a cytoplasmic poly(A) polymerase (PAP) that is associated with P granules in early embryos. Importantly, the GLD-2 protein sequence has diverged substantially from that of conventional eukaryotic PAPs, and lacks a recognizable RRM (RNA recognition motif)-like domain. GLD-2 has little PAP activity on its own, but is stimulated in vitro by GLD-3. GLD-3 is also a developmental regulator, and belongs to the Bicaudal-C family of RNA binding proteins5. We suggest that GLD-2 is the prototype for a class of regulatory cytoplasmic PAPs that are recruited to specific mRNAs by a binding partner, thereby targeting those mRNAs for polyadenylation and increased expression.

Suggested Citation

  • Liaoteng Wang & Christian R. Eckmann & Lisa C. Kadyk & Marvin Wickens & Judith Kimble, 2002. "A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans," Nature, Nature, vol. 419(6904), pages 312-316, September.
  • Handle: RePEc:nat:nature:v:419:y:2002:i:6904:d:10.1038_nature01039
    DOI: 10.1038/nature01039
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01039
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Brouze & Agnieszka Czarnocka-Cieciura & Olga Gewartowska & Monika Kusio-Kobiałka & Kamil Jachacy & Marcin Szpila & Bartosz Tarkowski & Jakub Gruchota & Paweł Krawczyk & Seweryn Mroczek & Ewa Bo, 2024. "TENT5-mediated polyadenylation of mRNAs encoding secreted proteins is essential for gametogenesis in mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:419:y:2002:i:6904:d:10.1038_nature01039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.