IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v419y2002i6902d10.1038_nature00947.html
   My bibliography  Save this article

The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing

Author

Listed:
  • Hansen Du

    (Brandeis University)

  • Michael Rosbash

    (Brandeis University)

Abstract

Splicing of precursor messenger RNA takes place in the spliceosome, a large RNA/protein macromolecular machine1. Spliceosome assembly occurs in an ordered pathway in vitro and is conserved between yeast and mammalian systems. The earliest step is commitment complex formation in yeast or E complex formation in mammals, which engages the pre-mRNA in the splicing pathway and involves interactions between U1 small nuclear ribonucleoprotein (snRNP) and the pre-mRNA 5′ splice site2,3. Complex formation depends on highly conserved base pairing between the 5′ splice site and the 5′ end of U1 snRNA, both in vivo and in vitro4,5,6,7. U1 snRNP proteins also contribute to U1 snRNP activity8,9,10. Here we show that U1 snRNP lacking the 5′ end of its snRNA retains 5′-splice-site sequence specificity. We also show that recombinant yeast U1C protein, a U1 snRNP protein, selects a 5′-splice-site-like sequence in which the first four nucleotides, GUAU, are identical to the first four nucleotides of the yeast 5′-splice-site consensus sequence. We propose that a U1C 5′-splice-site interaction precedes pre-mRNA/U1 snRNA base pairing and is the earliest step in the splicing pathway.

Suggested Citation

  • Hansen Du & Michael Rosbash, 2002. "The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing," Nature, Nature, vol. 419(6902), pages 86-90, September.
  • Handle: RePEc:nat:nature:v:419:y:2002:i:6902:d:10.1038_nature00947
    DOI: 10.1038/nature00947
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00947
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:419:y:2002:i:6902:d:10.1038_nature00947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.