IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v418y2002i6900d10.1038_nature00929.html
   My bibliography  Save this article

Dynamics of ATP-dependent chromatin assembly by ACF

Author

Listed:
  • Dmitry V. Fyodorov

    (University of California)

  • James T. Kadonaga

    (University of California)

Abstract

The assembly of DNA into chromatin is a critical step in the replication and repair of the eukaryotic genome1,2,3,4,5,6,7,8. It has been known for nearly 20 years that chromatin assembly is an ATP-dependent process9. ATP-dependent chromatin-assembly factor (ACF) uses the energy of ATP hydrolysis for the deposition of histones into periodic nucleosome arrays, and the ISWI subunit of ACF is an ATPase that is related to helicases10,11. Here we show that ACF becomes committed to the DNA template upon initiation of chromatin assembly. We also observed that ACF assembles nucleosomes in localized arrays, rather than randomly distributing them. By using a purified ACF-dependent system for chromatin assembly, we found that ACF hydrolyses about 2–4 molecules of ATP per base pair in the assembly of nucleosomes. This level of ATP hydrolysis is similar to that used by DNA helicases for the unwinding of DNA12. These results suggest that a tracking mechanism exists in which ACF assembles chromatin as an ATP-driven DNA-translocating motor. Moreover, this proposed mechanism for ACF may be relevant to the function of other chromatin-remodelling factors that contain ISWI subunits.

Suggested Citation

  • Dmitry V. Fyodorov & James T. Kadonaga, 2002. "Dynamics of ATP-dependent chromatin assembly by ACF," Nature, Nature, vol. 418(6900), pages 896-900, August.
  • Handle: RePEc:nat:nature:v:418:y:2002:i:6900:d:10.1038_nature00929
    DOI: 10.1038/nature00929
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00929
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6900:d:10.1038_nature00929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.