Author
Listed:
- Th. Gerrits
(University of Nijmegen)
- H. A. M. van den Berg
(University of Nijmegen)
- J. Hohlfeld
(University of Nijmegen)
- L. Bär
(Siemens AG, CTMF 1)
- Th. Rasing
(University of Nijmegen)
Abstract
Since the invention of the first magnetic memory disk in 1954, much effort has been put into enhancing the speed, bit density and reliability of magnetic memory devices. In the case of magnetic random access memory (MRAM) devices, fast coherent magnetization rotation by precession of the entire memory cell is desired1,2,3,4,5,6, because reversal by domain-wall motion is much too slow. In principle, the fundamental limit of the switching speed via precession is given by half of the precession period. However, under-critically damped systems exhibit severe ringing7,8 and simulations show that, as a consequence, undesired back-switching of magnetic elements of an MRAM can easily be initiated by subsequent write pulses, threatening data integrity. We present a method to reverse the magnetization in under-critically damped systems by coherent rotation of the magnetization while avoiding any ringing. This is achieved by applying specifically shaped magnetic field pulses that match the intrinsic properties of the magnetic elements. We demonstrate, by probing all three magnetization components9,10, that reliable precessional reversal in lithographically structured micrometre-sized elliptical permalloy elements is possible at switching times of about 200 ps, which is ten times faster than the natural damping time constant.
Suggested Citation
Th. Gerrits & H. A. M. van den Berg & J. Hohlfeld & L. Bär & Th. Rasing, 2002.
"Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping,"
Nature, Nature, vol. 418(6897), pages 509-512, August.
Handle:
RePEc:nat:nature:v:418:y:2002:i:6897:d:10.1038_nature00905
DOI: 10.1038/nature00905
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6897:d:10.1038_nature00905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.