IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v418y2002i6897d10.1038_nature00902.html
   My bibliography  Save this article

Functions of FGF signalling from the apical ectodermal ridge in limb development

Author

Listed:
  • Xin Sun

    (University of Wisconsin)

  • Francesca V. Mariani
  • Gail R. Martin

    (University of California at San Francisco)

Abstract

To determine the role of fibroblast growth factor (FGF) signalling from the apical ectodermal ridge (AER), we inactivated Fgf4 and Fgf8 in AER cells or their precursors at different stages of mouse limb development. We show that FGF4 and FGF8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the AER. On the basis of the skeletal phenotypes observed, we conclude that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the complete absence of both FGF4 and FGF8 activities, limb development fails. We present a model to explain how the mutant phenotypes arise from FGF-mediated effects on limb bud size and cell survival.

Suggested Citation

  • Xin Sun & Francesca V. Mariani & Gail R. Martin, 2002. "Functions of FGF signalling from the apical ectodermal ridge in limb development," Nature, Nature, vol. 418(6897), pages 501-508, August.
  • Handle: RePEc:nat:nature:v:418:y:2002:i:6897:d:10.1038_nature00902
    DOI: 10.1038/nature00902
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00902
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Sedas Perez & Caitlin McQueen & Holly Stainton & Joseph Pickering & Kavitha Chinnaiya & Patricia Saiz-Lopez & Marysia Placzek & Maria A. Ros & Matthew Towers, 2023. "Fgf signalling triggers an intrinsic mesodermal timer that determines the duration of limb patterning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6897:d:10.1038_nature00902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.