Author
Listed:
- Jennifer L. Herek
(Lund University
Vrije Universiteit)
- Wendel Wohlleben
(Max Planck Institut für Quantenoptik)
- Richard J. Cogdell
(IBLS, University of Glasgow)
- Dirk Zeidler
(Max Planck Institut für Quantenoptik)
- Marcus Motzkus
(Max Planck Institut für Quantenoptik)
Abstract
Coherent light sources have been widely used in control schemes that exploit quantum interference effects to direct the outcome of photochemical processes. The adaptive shaping of laser pulses is a particularly powerful tool in this context: experimental output as feedback in an iterative learning loop refines the applied laser field to render it best suited to constraints set by the experimenter1,2. This approach has been experimentally implemented to control a variety of processes3,4,5,6,7,8,9, but the extent to which coherent excitation can also be used to direct the dynamics of complex molecular systems in a condensed-phase environment remains unclear. Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium. We show that phases imprinted by the light field mediate the branching ratio of energy transfer between intra- and intermolecular channels in the complex's donor–acceptor system. This result illustrates that molecular complexity need not prevent coherent control, which can thus be extended to probe and affect biological functions.
Suggested Citation
Jennifer L. Herek & Wendel Wohlleben & Richard J. Cogdell & Dirk Zeidler & Marcus Motzkus, 2002.
"Quantum control of energy flow in light harvesting,"
Nature, Nature, vol. 417(6888), pages 533-535, May.
Handle:
RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417533a
DOI: 10.1038/417533a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417533a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.