IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6888d10.1038_417507a.html
   My bibliography  Save this article

Understanding and exploiting C–H bond activation

Author

Listed:
  • Jay A. Labinger

    (California Institute of Technology)

  • John E. Bercaw

    (California Institute of Technology)

Abstract

The selective transformation of ubiquitous but inert C–H bonds to other functional groups has far-reaching practical implications, ranging from more efficient strategies for fine chemical synthesis to the replacement of current petrochemical feedstocks by less expensive and more readily available alkanes. The past twenty years have seen many examples of C–H bond activation at transition-metal centres, often under remarkably mild conditions and with high selectivity. Although profitable practical applications have not yet been developed, our understanding of how these organometallic reactions occur, and what their inherent advantages and limitations for practical alkane conversion are, has progressed considerably. In fact, the recent development of promising catalytic systems highlights the potential of organometallic chemistry for useful C–H bond activation strategies that will ultimately allow us to exploit Earth's alkane resources more efficiently and cleanly.

Suggested Citation

  • Jay A. Labinger & John E. Bercaw, 2002. "Understanding and exploiting C–H bond activation," Nature, Nature, vol. 417(6888), pages 507-514, May.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417507a
    DOI: 10.1038/417507a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/417507a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/417507a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian-Yu Li & Shiyan Cheng & Ziqi Ye & Tao Huang & Fuxing Yang & Yu-Mei Lin & Lei Gong, 2023. "Visible light-triggered selective C(sp2)-H/C(sp3)-H coupling of benzenes with aliphatic hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Sagnik Chakrabarti & Soumalya Sinha & Giang N. Tran & Hanah Na & Liviu M. Mirica, 2023. "Characterization of paramagnetic states in an organometallic nickel hydrogen evolution electrocatalyst," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417507a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.