IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6887d10.1038_417419a.html
   My bibliography  Save this article

Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes

Author

Listed:
  • Paul M. Schenk

    (Lunar and Planetary Institute)

Abstract

A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean1,2,3,4. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres5,6 to ten or more kilometres7. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7–8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites3,8,9, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25–0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models1 and indicate that exchange of oceanic and surface material could be difficult.

Suggested Citation

  • Paul M. Schenk, 2002. "Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes," Nature, Nature, vol. 417(6887), pages 419-421, May.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6887:d:10.1038_417419a
    DOI: 10.1038/417419a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/417419a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/417419a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6887:d:10.1038_417419a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.