IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6886d10.1038_417271a.html
   My bibliography  Save this article

A palaeontological solution to the arthropod head problem

Author

Listed:
  • Graham E. Budd

    (Uppsala University)

Abstract

The composition of the arthropod head has been one of the most controversial topics in zoology, with a large number of theories being proposed to account for it over the last century1. Although fossils have been recognized as being of potential importance in resolving the issue2,3, a lack of consensus over their systematics4,5 has obscured their contribution. Here, I show that a group of previously problematic Cambrian arthropods from the Burgess Shale and Chengjiang faunas form a clade close to crown-group euarthropods, the group containing myriapods, chelicerates, insects and crustaceans6. They are characterized by modified or even absent endopods, and two pre-oral appendages. Comparison with reconstructions of the crown-group euarthropod ground plan6 and recent investigations into onychophorans7,8 demonstrates that these two appendages are the first antenna (of extant crustaceans) and a more anterior appendage associated with an ocular segment. The latter appendage has been reduced in all crown-group euarthropods. Its most likely relic is as a component of the labrum9. These fossils thus tie together results from disparate living groups (onychophorans and euarthropods).

Suggested Citation

  • Graham E. Budd, 2002. "A palaeontological solution to the arthropod head problem," Nature, Nature, vol. 417(6886), pages 271-275, May.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6886:d:10.1038_417271a
    DOI: 10.1038/417271a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/417271a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/417271a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Pates & Joseph P. Botting & Lucy A. Muir & Joanna M. Wolfe, 2022. "Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6886:d:10.1038_417271a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.