IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6882d10.1038_416767a.html
   My bibliography  Save this article

Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis

Author

Listed:
  • Susan E. Childers

    (University of Massachusetts)

  • Stacy Ciufo

    (University of Massachusetts)

  • Derek R. Lovley

    (University of Massachusetts)

Abstract

Microorganisms that use insoluble Fe(iii) oxide as an electron acceptor can have an important function in the carbon and nutrient cycles of aquatic sediments and in the bioremediation of organic and metal contaminants in groundwater1,2. Although Fe(iii) oxides are often abundant, Fe(iii)-reducing microbes are faced with the problem of how to access effectively an electron acceptor that can not diffuse to the cell. Fe(iii)-reducing microorganisms in the genus Shewanella have resolved this problem by releasing soluble quinones that can carry electrons from the cell surface to Fe(iii) oxide that is at a distance from the cell3,4. Here we report that another Fe(iii)-reducer, Geobacter metallireducens, has an alternative strategy for accessing Fe(iii) oxides. Geobacter metallireducens specifically expresses flagella and pili only when grown on insoluble Fe(iii) or Mn(iv) oxide, and is chemotactic towards Fe(ii) and Mn(ii) under these conditions. These results suggest that G. metallireducens senses when soluble electron acceptors are depleted and then synthesizes the appropriate appendages to permit it to search for, and establish contact with, insoluble Fe(iii) or Mn(iv) oxide. This approach to the use of an insoluble electron acceptor may explain why Geobacter species predominate over other Fe(iii) oxide-reducing microorganisms in a wide variety of sedimentary environments5,6,7,8.

Suggested Citation

  • Susan E. Childers & Stacy Ciufo & Derek R. Lovley, 2002. "Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis," Nature, Nature, vol. 416(6882), pages 767-769, April.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6882:d:10.1038_416767a
    DOI: 10.1038/416767a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/416767a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/416767a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar C. Portela & Catharine C. Shipps & Cong Shen & Vishok Srikanth & Carlos A. Salgueiro & Nikhil S. Malvankar, 2024. "Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6882:d:10.1038_416767a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.