IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6880d10.1038_nature729.html
   My bibliography  Save this article

Changing potency by spontaneous fusion

Author

Listed:
  • Qi-Long Ying

    (University of Edinburgh)

  • Jennifer Nichols

    (University of Edinburgh)

  • Edward P. Evans

    (University of Oxford)

  • Austin G. Smith

    (University of Edinburgh)

Abstract

Recent reports have suggested that mammalian stem cells residing in one tissue may have the capacity to produce differentiated cell types for other tissues and organs1–9. Here we define a mechanism by which progenitor cells of the central nervous system can give rise to non-neural derivatives. Cells taken from mouse brain were co-cultured with pluripotent embryonic stem cells. Following selection for a transgenic marker carried only by the brain cells, undifferentiated stem cells are recovered in which the brain cell genome has undergone epigenetic reprogramming. However, these cells also carry a transgenic marker and chromosomes derived from the embryonic stem cells. Therefore the altered phenotype does not arise by direct conversion of brain to embryonic stem cell but rather through spontaneous generation of hybrid cells. The tetraploid hybrids exhibit full pluripotent character, including multilineage contribution to chimaeras. We propose that transdetermination consequent to cell fusion10 could underlie many observations otherwise attributed to an intrinsic plasticity of tissue stem cells9.

Suggested Citation

  • Qi-Long Ying & Jennifer Nichols & Edward P. Evans & Austin G. Smith, 2002. "Changing potency by spontaneous fusion," Nature, Nature, vol. 416(6880), pages 545-548, April.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6880:d:10.1038_nature729
    DOI: 10.1038/nature729
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature729
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Tran Phuc Khoa & Wentao Yang & Mengrou Shan & Li Zhang & Fengbiao Mao & Bo Zhou & Qiang Li & Rebecca Malcore & Clair Harris & Lili Zhao & Rajesh C. Rao & Shigeki Iwase & Sundeep Kalantry & Stephani, 2024. "Quiescence enables unrestricted cell fate in naive embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Ling-Li Li & Guohua Ding & Nan Feng & Ming-Huang Wang & Yuh-Shan Ho, 2009. "Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 39-58, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6880:d:10.1038_nature729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.