Author
Listed:
- Mark I. Richardson
(California Institute of Technology, MC 150-21)
- R. John Wilson
(Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, PO Box 308)
Abstract
Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity1. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary2,3,4,5, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice3,5,6. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180°. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north–south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere7,8,9,10,11. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.
Suggested Citation
Mark I. Richardson & R. John Wilson, 2002.
"A topographically forced asymmetry in the martian circulation and climate,"
Nature, Nature, vol. 416(6878), pages 298-301, March.
Handle:
RePEc:nat:nature:v:416:y:2002:i:6878:d:10.1038_416298a
DOI: 10.1038/416298a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6878:d:10.1038_416298a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.