IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6876d10.1038_nature722.html
   My bibliography  Save this article

Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9

Author

Listed:
  • Peter R. Nielsen

    (University of Cambridge)

  • Daniel Nietlispach

    (University of Cambridge)

  • Helen R. Mott

    (University of Cambridge)

  • Juliana Callaghan

    (University of Cambridge)

  • Andrew Bannister

    (University of Cambridge)

  • Tony Kouzarides

    (University of Cambridge)

  • Alexey G. Murzin

    (MRC Centre for Protein Engineering)

  • Natalia V. Murzina

    (University of Cambridge)

  • Ernest D. Laue

    (University of Cambridge)

Abstract

Specific modifications to histones are essential epigenetic markers1—heritable changes in gene expression that do not affect the DNA sequence. Methylation of lysine 9 in histone H3 is recognized by heterochromatin protein 1 (HP1), which directs the binding of other proteins to control chromatin structure and gene expression2,3,4. Here we show that HP1 uses an induced-fit mechanism for recognition of this modification, as revealed by the structure of its chromodomain bound to a histone H3 peptide dimethylated at Nζ of lysine 9. The binding pocket for the N-methyl groups is provided by three aromatic side chains, Tyr 21, Trp 42 and Phe 45, which reside in two regions that become ordered on binding of the peptide. The side chain of Lys 9 is almost fully extended and surrounded by residues that are conserved in many other chromodomains. The QTAR peptide sequence preceding Lys 9 makes most of the additional interactions with the chromodomain, with HP1 residues Val 23, Leu 40, Trp 42, Leu 58 and Cys 60 appearing to be a major determinant of specificity by binding the key buried Ala 7. These findings predict which other chromodomains will bind methylated proteins and suggest a motif that they recognize.

Suggested Citation

  • Peter R. Nielsen & Daniel Nietlispach & Helen R. Mott & Juliana Callaghan & Andrew Bannister & Tony Kouzarides & Alexey G. Murzin & Natalia V. Murzina & Ernest D. Laue, 2002. "Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9," Nature, Nature, vol. 416(6876), pages 103-107, March.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6876:d:10.1038_nature722
    DOI: 10.1038/nature722
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature722
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Muzzopappa & Johan Hummert & Michela Anfossi & Stanimir Asenov Tashev & Dirk-Peter Herten & Fabian Erdel, 2022. "Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6876:d:10.1038_nature722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.