IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6876d10.1038_416037a.html
   My bibliography  Save this article

Supercontraction stress in wet spider dragline

Author

Listed:
  • Fraser I. Bell

    (Heriot-Watt University)

  • Iain J. McEwen

    (Heriot-Watt University)

  • Christopher Viney

    (Heriot-Watt University)

Abstract

Unrestrained spider dragline 'super-contracts' when it is wetted, causing its length to shrink by about half and its diameter to almost double1,2. Here we measure the supercontraction stresses generated upon initial exposure of spider dragline to moisture and find that they are transient, as well as being greater than previously estimated. Our findings cast doubt on suggestions that supercontraction may help to maintain tension in wet webs and could limit the potential load-bearing applications of silk and its analogues.

Suggested Citation

  • Fraser I. Bell & Iain J. McEwen & Christopher Viney, 2002. "Supercontraction stress in wet spider dragline," Nature, Nature, vol. 416(6876), pages 37-37, March.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6876:d:10.1038_416037a
    DOI: 10.1038/416037a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/416037a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/416037a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan & Liu, Yong & Xu, Lan & Yu, Jian-Yong & Sun, Gang, 2008. "BioMimic fabrication of electrospun nanofibers with high-throughput," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 643-651.
    2. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6876:d:10.1038_416037a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.