Author
Listed:
- Kuang Hu
(MRC Laboratory of Molecular Biology)
- Joe Carroll
(MRC Laboratory of Molecular Biology)
- Sergei Fedorovich
(MRC Laboratory of Molecular Biology)
- Colin Rickman
(MRC Laboratory of Molecular Biology)
- Andrei Sukhodub
(MRC Laboratory of Molecular Biology)
- Bazbek Davletov
(MRC Laboratory of Molecular Biology)
Abstract
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane1,2,3,4. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes5,6. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.
Suggested Citation
Kuang Hu & Joe Carroll & Sergei Fedorovich & Colin Rickman & Andrei Sukhodub & Bazbek Davletov, 2002.
"Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion,"
Nature, Nature, vol. 415(6872), pages 646-650, February.
Handle:
RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415646a
DOI: 10.1038/415646a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415646a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.