IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6870d10.1038_415426a.html
   My bibliography  Save this article

Species diversity enhances ecosystem functioning through interspecific facilitation

Author

Listed:
  • Bradley J. Cardinale

    (The University of Maryland)

  • Margaret A. Palmer

    (The University of Maryland)

  • Scott L. Collins

    (The University of Maryland)

Abstract

Facilitation between species is thought to be a key mechanism by which biodiversity affects the rates of resource use that govern the efficiency and productivity of ecosystems1,2,3,4; however, there is no direct empirical evidence to support this hypothesis. Here we show that increasing the species diversity of a functional group of aquatic organisms induces facilitative interactions, leading to non-additive changes in resource consumption. We increased the richness and evenness of suspension-feeding caddisfly larvae (Insecta, Trichoptera) in stream mesocosms and found that the increased topographical complexity of the benthic habitat alters patterns of near-bed flow such that the feeding success of individuals is enhanced. Species diversity reduces ‘current shading’ (that is, the deceleration of flow from upstream to downstream neighbours), allowing diverse assemblages to capture a greater fraction of suspended resources than is caught by any species monoculture. The fundamental nature of this form of hydrodynamic facilitation suggests that it is broadly applicable to freshwater and marine habitats; in addition, it has several analogues in terrestrial ecosystems where fluxes of energy and matter can be influenced by biophysical complexity3,5,6. Thus, changes in species diversity may alter the probability of positive species interactions, resulting in disproportionately large changes in the functioning of ecosystems.

Suggested Citation

  • Bradley J. Cardinale & Margaret A. Palmer & Scott L. Collins, 2002. "Species diversity enhances ecosystem functioning through interspecific facilitation," Nature, Nature, vol. 415(6870), pages 426-429, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6870:d:10.1038_415426a
    DOI: 10.1038/415426a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415426a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415426a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    2. Mouton, Ans M. & Schneider, Matthias & Peter, Armin & Holzer, Georg & Müller, Rudolf & Goethals, Peter L.M. & De Pauw, Niels, 2008. "Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland)," Ecological Modelling, Elsevier, vol. 215(1), pages 122-132.
    3. Nogues, Quentin & Baulaz, Yoann & Clavel, Joanne & Araignous, Emma & Bourdaud, Pierre & Ben Rais Lasram, Frida & Dauvin, Jean-Claude & Girardin, Valérie & Halouani, Ghassen & Le Loc'h, François & Loew, 2023. "The usefulness of food web models in the ecosystem services framework: Quantifying, mapping, and linking services supply," Ecosystem Services, Elsevier, vol. 63(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6870:d:10.1038_415426a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.