IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6868d10.1038_415183a.html
   My bibliography  Save this article

Alternative nucleotide incision repair pathway for oxidative DNA damage

Author

Listed:
  • Alexander A. Ischenko

    (Groupe “Réparation de l’ADN'’, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy
    Novosibirsk Institute of Bioorganic Chemistry)

  • Murat K. Saparbaev

    (Groupe “Réparation de l’ADN'’, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy)

Abstract

The DNA glycosylase pathway1, which requires the sequential action of two enzymes for the incision of DNA2, presents a serious problem for the efficient repair of oxidative DNA damage, because it generates genotoxic intermediates such as abasic sites and/or blocking 3′-end groups that must be eliminated by additional steps before DNA repair synthesis can be initiated. Besides the logistical problems, biological evidence hints at the existence of an alternative repair pathway. Mutants of Escherichia coli3 and mice (ref. 4 and M. Takao et al., personal communication) that are deficient in DNA glycosylases that remove oxidized bases are not sensitive to reactive oxygen species, and the E. coli triple mutant nei, nth, fpg is more radioresistant than the wild-type strain5. Here we show that Nfo-like endonucleases nick DNA on the 5′ side of various oxidatively damaged bases, generating 3′-hydroxyl and 5′-phosphate termini. Nfo-like endonucleases function next to each of the modified bases that we tested, including 5,6-dihydrothymine, 5,6-dihydrouracil, 5-hydroxyuracil and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine residues. The 3′-hydroxyl terminus provides the proper end for DNA repair synthesis; the dangling damaged nucleotide on the 5′ side is then a good substrate for human flap-structure endonuclease6 and for DNA polymerase I of E. coli.

Suggested Citation

  • Alexander A. Ischenko & Murat K. Saparbaev, 2002. "Alternative nucleotide incision repair pathway for oxidative DNA damage," Nature, Nature, vol. 415(6868), pages 183-187, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415183a
    DOI: 10.1038/415183a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415183a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415183a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415183a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.