Author
Listed:
- Kimberly Hamad-Schifferli
(The Media Laboratory, Massachusetts Institute of Technology)
- John J. Schwartz
(Engeneos)
- Aaron T. Santos
(The Media Laboratory, Massachusetts Institute of Technology)
- Shuguang Zhang
(Center for Biomedical Engineering, Massachusetts Institute of Technology)
- Joseph M. Jacobson
(The Media Laboratory, Massachusetts Institute of Technology)
Abstract
Increasingly detailed structural1 and dynamic2,3 studies are highlighting the precision with which biomolecules execute often complex tasks at the molecular scale. The efficiency and versatility of these processes have inspired many attempts to mimic or harness them. To date, biomolecules have been used to perform computational operations4 and actuation5, to construct artificial transcriptional loops that behave like simple circuit elements6,7 and to direct the assembly of nanocrystals8. Further development of these approaches requires new tools for the physical and chemical manipulation of biological systems. Biomolecular activity has been triggered optically through the use of chromophores9,10,11,12,13,14, but direct electronic control over biomolecular ‘machinery’ in a specific and fully reversible manner has not yet been achieved. Here we demonstrate remote electronic control over the hybridization behaviour of DNA molecules, by inductive coupling of a radio-frequency magnetic field to a metal nanocrystal covalently linked to DNA15. Inductive coupling to the nanocrystal increases the local temperature of the bound DNA, thereby inducing denaturation while leaving surrounding molecules relatively unaffected. Moreover, because dissolved biomolecules dissipate heat in less than 50 picoseconds (ref. 16), the switching is fully reversible. Inductive heating of macroscopic samples is widely used17,18,19, but the present approach should allow extension of this concept to the control of hybridization and thus of a broad range of biological functions on the molecular scale.
Suggested Citation
Kimberly Hamad-Schifferli & John J. Schwartz & Aaron T. Santos & Shuguang Zhang & Joseph M. Jacobson, 2002.
"Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,"
Nature, Nature, vol. 415(6868), pages 152-155, January.
Handle:
RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415152a
DOI: 10.1038/415152a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415152a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.