IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6867d10.1038_415081a.html
   My bibliography  Save this article

Inter-receptor communication through arrays of bacterial chemoreceptors

Author

Listed:
  • Jason E. Gestwicki

    (University of Wisconsin–Madison)

  • Laura L. Kiessling

    (University of Wisconsin–Madison)

Abstract

The sensing mechanisms of chemotactic bacteria allow them to respond sensitively to stimuli. Escherichia coli, for example, respond to changes in chemoattractant concentration of less than 10% over a range spanning six orders of magnitude1,2. Sensitivity over this range depends on a nonlinear relationship between ligand concentration and output response3. At low ligand concentrations, substantial amplification of the chemotactic signal is required; however, the mechanism responsible for this amplification remains unclear. Here we demonstrate that inter-receptor communication within a lattice4,5 acts to amplify and integrate sensory information. Synthetic multivalent ligands that interact through the low-abundance, galactose-sensing receptor Trg stabilize large clusters of chemoreceptors and markedly enhance signal output from these enforced clusters. On treatment with multivalent ligands, the response to the attractant serine is amplified by at least 100-fold. This amplification requires a full complement of chemoreceptors; deletion of the aspartate (Tar) or dipeptide (Tap) receptors diminishes the amplification of the serine response. These results demonstrate that the entire array is involved in sensing. This mode of information exchange has general implications for the processing of signals by cellular receptors.

Suggested Citation

  • Jason E. Gestwicki & Laura L. Kiessling, 2002. "Inter-receptor communication through arrays of bacterial chemoreceptors," Nature, Nature, vol. 415(6867), pages 81-84, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415081a
    DOI: 10.1038/415081a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415081a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415081a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415081a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.