IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6866d10.1038_414916a.html
   My bibliography  Save this article

Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage

Author

Listed:
  • Akio Ohta

    (Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Michail Sitkovsky

    (Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

Abstract

Inappropriate or prolonged inflammation is the main cause of many diseases1; for this reason it is important to understand the physiological mechanisms that terminate inflammation in vivo2. Agonists for several Gs-protein-coupled receptors3, including cell-surface adenosine purinergic receptors4,5,6,7, can increase levels of immunosuppressive cyclic AMP in immune cells8,9,10,11,12,13,14,15; however, it was unknown whether any of these receptors regulates inflammation in vivo. Here we show that A2a adenosine receptors have a non-redundant role in the attenuation of inflammation and tissue damage in vivo. Sub-threshold doses of an inflammatory stimulus16,17 that caused minimal tissue damage in wild-type mice were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of male animals deficient in the A2a adenosine receptor. Similar observations were made in studies of three different models of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock. We suggest that A2a adenosine receptors are a critical part of the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.

Suggested Citation

  • Akio Ohta & Michail Sitkovsky, 2001. "Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage," Nature, Nature, vol. 414(6866), pages 916-920, December.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6866:d:10.1038_414916a
    DOI: 10.1038/414916a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/414916a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/414916a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Zhang & Jingsheng Huang & Ziling Zeng & Shasha He & Penghui Cheng & Jingchao Li & Kanyi Pu, 2022. "Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6866:d:10.1038_414916a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.