IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6861d10.1038_35104586.html
   My bibliography  Save this article

Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex

Author

Listed:
  • Michael W. Lake

    (State University of New York at Stony Brook)

  • Margot M. Wuebbens

    (Duke University Medical Center)

  • K. V. Rajagopalan

    (Duke University Medical Center)

  • Hermann Schindelin

    (State University of New York at Stony Brook)

Abstract

The activation of ubiquitin and related protein modifiers1,2 is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway3,4. The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif5. Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis6,7. These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB3,5. Here we present the crystal structures of the MoeB–MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB– and E1–substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.

Suggested Citation

  • Michael W. Lake & Margot M. Wuebbens & K. V. Rajagopalan & Hermann Schindelin, 2001. "Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex," Nature, Nature, vol. 414(6861), pages 325-329, November.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6861:d:10.1038_35104586
    DOI: 10.1038/35104586
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35104586
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35104586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Truongvan & Shurong Li & Mohit Misra & Monika Kuhn & Hermann Schindelin, 2022. "Structures of UBA6 explain its dual specificity for ubiquitin and FAT10," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6861:d:10.1038_35104586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.