IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6860d10.1038_35102599.html
   My bibliography  Save this article

Gridlock signalling pathway fashions the first embryonic artery

Author

Listed:
  • Tao P. Zhong

    (Cardiovascular Research Center, Harvard Medical School
    Vanderbilt Medical School)

  • Sarah Childs

    (Cardiovascular Research Center, Harvard Medical School
    University of Calgary)

  • James P. Leu

    (Cardiovascular Research Center, Harvard Medical School)

  • Mark C. Fishman

    (Cardiovascular Research Center, Harvard Medical School)

Abstract

Arteries and veins are morphologically, functionally and molecularly very different, but how this distinction is established during vasculogenesis is unknown1,2. Here we show, by lineage tracking in zebrafish embryos, that angioblast precursors for the trunk artery and vein are spatially mixed in the lateral posterior mesoderm. Progeny of each angioblast, however, are restricted to one of the vessels. This arterial–venous decision is guided by gridlock (grl), an artery-restricted gene that is expressed in the lateral posterior mesoderm3. Graded reduction of grl expression, by mutation or morpholino antisense, progressively ablates regions of the artery, and expands contiguous regions of the vein, preceded by an increase in expression of the venous marker EphB4 receptor (ephb4)2 and diminution of expression of the arterial marker ephrin-B2 (efnb2)2. grl is downstream of notch4, and interference with notch signalling, by blocking Su(H)4, similarly reduces the artery and increases the vein. Thus, a notch–grl pathway controls assembly of the first embryonic artery, apparently by adjudicating an arterial versus venous cell fate decision.

Suggested Citation

  • Tao P. Zhong & Sarah Childs & James P. Leu & Mark C. Fishman, 2001. "Gridlock signalling pathway fashions the first embryonic artery," Nature, Nature, vol. 414(6860), pages 216-220, November.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6860:d:10.1038_35102599
    DOI: 10.1038/35102599
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35102599
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35102599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Stewen & Kai Kruse & Anca T. Godoi-Filip & Zenia & Hyun-Woo Jeong & Susanne Adams & Frank Berkenfeld & Martin Stehling & Kristy Red-Horse & Ralf H. Adams & Mara E. Pitulescu, 2024. "Eph-ephrin signaling couples endothelial cell sorting and arterial specification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6860:d:10.1038_35102599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.