Author
Abstract
One way of accounting for lowered atmospheric carbon dioxide concentrations during Pleistocene glacial periods is by invoking the Antarctic stratification hypothesis, which links the reduction in CO2 to greater stratification of ocean surface waters around Antarctica1,2. As discussed by Sigman and Boyle3, this hypothesis assumes that increased stratification in the Antarctic zone (Fig. 1) was associated with reduced upwelling of deep waters around Antarctica, thereby allowing CO2 outgassing to be suppressed by biological production while also allowing biological production to decline, which is consistent with Antarctic sediment records4. We point out here, however, that the response of ocean eddies to increased Antarctic stratification can be expected to increase, rather than reduce, the upwelling rate of deep waters around Antarctica. The stratification hypothesis may have difficulty in accommodating eddy feedbacks on upwelling within the constraints imposed by reconstructions of winds and Antarctic-zone productivity in glacial periods. Figure 1 Northward Ekman transport of surface waters and contours of modern potential density averaged for each ocean zone. The approximate mean latitude of the Polar Front (northern boundary of Antarctic zone) and direction of Ekman and eddy transports that control the rate of deepwater upwelling are shown (lower panel). The relevant eddy transport involves a net southward flow, as opposed to north–south mixing, and ultimately results from the tendency of lighter water to spread over denser water.
Suggested Citation
Ralph F. Keeling & Martin Visbeck, 2001.
"Antarctic stratification and glacial CO2,"
Nature, Nature, vol. 412(6847), pages 605-606, August.
Handle:
RePEc:nat:nature:v:412:y:2001:i:6847:d:10.1038_35088129
DOI: 10.1038/35088129
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6847:d:10.1038_35088129. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.