IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6847d10.1038_35088068.html
   My bibliography  Save this article

Density-dependent mortality in an oceanic copepod population

Author

Listed:
  • M. D. Ohman

    (Station Zoologique
    University of California, San Diego)

  • H.-J. Hirche

    (Alfred Wegener Institute for Polar and Marine Research)

Abstract

Planktonic copepods are primary consumers in the ocean and are perhaps the most numerous metazoans on earth. Secondary production by these zooplankton supports most food webs of the open sea, directly affecting pelagic fish populations and the biological pump of carbon into the deep ocean. Models of marine ecosystems are quite sensitive to the formulation of the term for zooplankton mortality1,2,3,4, although there are few data available to constrain mortality rates in such models. Here we present the first evidence for nonlinear, density-dependent mortality rates of open-ocean zooplankton. A high-frequency time series reveals that per capita mortality rates of eggs of Calanus finmarchicus Gunnerus are a function of the abundance of adult females and juveniles. The temporal dynamics of zooplankton populations can be influenced as much by time-dependent mortality rates as by variations in ‘bottom up’ forcing. The functional form and rates chosen for zooplankton mortality in ecosystem models can alter the balance of pelagic ecosystems1,2,3, modify elemental fluxes into the ocean's interior5, and modulate interannual variability in pelagic ecosystems6.

Suggested Citation

  • M. D. Ohman & H.-J. Hirche, 2001. "Density-dependent mortality in an oceanic copepod population," Nature, Nature, vol. 412(6847), pages 638-641, August.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6847:d:10.1038_35088068
    DOI: 10.1038/35088068
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35088068
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35088068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    2. Dur, Gaël & Jiménez-Melero, Raquel & Beyrend-Dur, Delphine & Hwang, Jiang-Shiou & Souissi, Sami, 2013. "Individual-based model of the phenology of egg-bearing copepods: Application to Eurytemora affinis from the Seine estuary, France," Ecological Modelling, Elsevier, vol. 269(C), pages 21-36.
    3. Chen, Bingzhang & Smith, S. Lan, 2018. "Optimality-based approach for computationally efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and nitrogen-to-carbon ratios," Ecological Modelling, Elsevier, vol. 385(C), pages 197-212.
    4. Mitra, Aditee, 2009. "Are closure terms appropriate or necessary descriptors of zooplankton loss in nutrient–phytoplankton–zooplankton type models?," Ecological Modelling, Elsevier, vol. 220(5), pages 611-620.
    5. Eisenhauer, L. & Carlotti, F. & Baklouti, M. & Diaz, F., 2009. "Zooplankton population model coupled to a biogeochemical model of the North Western Mediterranean Sea ecosystem," Ecological Modelling, Elsevier, vol. 220(21), pages 2865-2876.
    6. Chen, Bingzhang, 2022. "Thermal diversity affects community responses to warming," Ecological Modelling, Elsevier, vol. 464(C).
    7. Record, N.R. & Pershing, A.J. & Maps, F., 2013. "Emergent copepod communities in an adaptive trait-structured model," Ecological Modelling, Elsevier, vol. 260(C), pages 11-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6847:d:10.1038_35088068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.