IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6843d10.1038_35084172.html
   My bibliography  Save this article

Water and the martian landscape

Author

Listed:
  • Victor R. Baker

    (University of Arizona)

Abstract

Over the past 30 years, the water-generated landforms and landscapes of Mars have been revealed in increasing detail by a succession of spacecraft missions. Recent data from the Mars Global Surveyor mission confirm the view that brief episodes of water-related activity, including glaciation, punctuated the geological history of Mars. The most recent of these episodes seems to have occurred within the past 10 million years. These new results are anomalous in regard to the prevailing view that the martian surface has been continuously extremely cold and dry, much as it is today, for the past 3.9 billion years. Interpretations of the new data are controversial, but explaining the anomalies in a consistent manner leads to potentially fruitful hypotheses for understanding the evolution of Mars in relation to Earth.

Suggested Citation

  • Victor R. Baker, 2001. "Water and the martian landscape," Nature, Nature, vol. 412(6843), pages 228-236, July.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6843:d:10.1038_35084172
    DOI: 10.1038/35084172
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35084172
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35084172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "A Review of the Geomechanics Aspects in Space Exploration," Energies, MDPI, vol. 14(22), pages 1-21, November.
    2. Roberto Barbieri & Barbara Cavalazzi, 2014. "How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field," Challenges, MDPI, vol. 5(2), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6843:d:10.1038_35084172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.