IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6842d10.1038_35083586.html
   My bibliography  Save this article

Cortical remodelling induced by activity of ventral tegmental dopamine neurons

Author

Listed:
  • Shaowen Bao

    (Keck Center for Integrative Neuroscience, University of California)

  • Vincent T. Chan

    (Keck Center for Integrative Neuroscience, University of California)

  • Michael M. Merzenich

    (Keck Center for Integrative Neuroscience, University of California)

Abstract

Representations of sensory stimuli in the cerebral cortex can undergo progressive remodelling according to the behavioural importance of the stimuli1,2. The cortex receives widespread projections from dopamine neurons in the ventral tegmental area (VTA)3,4,5, which are activated by new stimuli or unpredicted rewards6,7, and are believed to provide a reinforcement signal for such learning-related cortical reorganization8. In the primary auditory cortex (AI) dopamine release has been observed during auditory learning that remodels the sound-frequency representations9,10. Furthermore, dopamine modulates long-term potentiation11,12, a putative cellular mechanism underlying plasticity13. Here we show that stimulating the VTA together with an auditory stimulus of a particular tone increases the cortical area and selectivity of the neural responses to that sound stimulus in AI. Conversely, the AI representations of nearby sound frequencies are selectively decreased. Strong, sharply tuned responses to the paired tones also emerge in a second cortical area, whereas the same stimuli evoke only poor or non-selective responses in this second cortical field in naive animals. In addition, we found that strong long-range coherence of neuronal discharge emerges between AI and this secondary auditory cortical area.

Suggested Citation

  • Shaowen Bao & Vincent T. Chan & Michael M. Merzenich, 2001. "Cortical remodelling induced by activity of ventral tegmental dopamine neurons," Nature, Nature, vol. 412(6842), pages 79-83, July.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6842:d:10.1038_35083586
    DOI: 10.1038/35083586
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35083586
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35083586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ursula A. Tooley & Aidan Latham & Jeanette K. Kenley & Dimitrios Alexopoulos & Tara A. Smyser & Ashley N. Nielsen & Lisa Gorham & Barbara B. Warner & Joshua S. Shimony & Jeffrey J. Neil & Joan L. Luby, 2024. "Prenatal environment is associated with the pace of cortical network development over the first three years of life," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6842:d:10.1038_35083586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.