IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6839d10.1038_35081062.html
   My bibliography  Save this article

Proximity signal and shade avoidance differences between early and late successional trees

Author

Listed:
  • Ian R. Gilbert

    (Institute of Cell and Molecular Biology)

  • Paul G. Jarvis

    (Institute of Ecology and Resource Management, University of Edinburgh)

  • Harry Smith

    (University of Nottingham, Sutton Bonington Campus)

Abstract

Competitive interactions between plants determine the success of individuals and species. In developing forests, competition for light is the predominant factor. Shade tolerators acclimate photosynthetically to low light1,2,3 and are capable of long-term survival under the shade cast by others, whereas shade avoiders rapidly dominate gaps but are overtaken in due course by shade-tolerant, later successional species. Shade avoidance4,5,6 results from the phytochrome-mediated perception of far-red radiation (700–800 nm) scattered from the leaves of neighbours, provides early warning of shading7, and induces developmental responses that, when successful, result in the overgrowth of those neighbours8. Shade tolerators cast a deep shade, whereas less-tolerant species cast light shade9, and saplings tend to have high survivorship in shade cast by conspecific adults, but high rates of mortality when shaded by more-tolerant species9. Here we report a parallel relationship in which the shade-avoidance responses of three tree species are inversely proportional to proximity signals generated by those species. On this basis, early successional species generate small proximity signals but react strongly to them, whereas late successional species react weakly but generate strong signals.

Suggested Citation

  • Ian R. Gilbert & Paul G. Jarvis & Harry Smith, 2001. "Proximity signal and shade avoidance differences between early and late successional trees," Nature, Nature, vol. 411(6839), pages 792-795, June.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6839:d:10.1038_35081062
    DOI: 10.1038/35081062
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35081062
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35081062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiegand, Kerstin & Saltz, David & Ward, David & Levin, Simon A., 2008. "The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas," Ecological Modelling, Elsevier, vol. 210(4), pages 431-445.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6839:d:10.1038_35081062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.