IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6837d10.1038_35079000.html
   My bibliography  Save this article

Many-body and correlation effects in semiconductors

Author

Listed:
  • D. S. Chemla

    (University of California at Berkeley, Lawrence Berkeley Laboratory)

  • Jagdeep Shah

    (Bell Laboratories, Lucent Technologies)

Abstract

Solids consist of 1022–1023 particles per cubic centimetre, interacting through infinite-range Coulomb interactions. The linear response of a solid to a weak external perturbation is well described by the concept of non-interacting ‘quasiparticles’ first introduced by Landau. But interactions between quasiparticles can be substantial in dense systems. For example, studies over the past decade have shown that Coulomb correlations between quasiparticles dominate the nonlinear optical response of semiconductors, in marked contrast to the behaviour of atomic systems. These Coulomb correlations and other many-body interactions are important not only for semiconductors, but also for all condensed-matter systems.

Suggested Citation

  • D. S. Chemla & Jagdeep Shah, 2001. "Many-body and correlation effects in semiconductors," Nature, Nature, vol. 411(6837), pages 549-557, May.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6837:d:10.1038_35079000
    DOI: 10.1038/35079000
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35079000
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35079000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6837:d:10.1038_35079000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.