IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6835d10.1038_35077056.html
   My bibliography  Save this article

Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle

Author

Listed:
  • D. M. Kerrick

    (The Pennsylvania State University)

  • J. A. D. Connolly

    (Swiss Federal Institute of Technology)

Abstract

Volatiles, most notably CO2, are recycled back into the Earth's interior at subduction zones1,2. The amount of CO2 emitted from arc volcanism appears to be less than that subducted, which implies that a significant amount of CO2 either is released before reaching the depth at which arc magmas are generated or is subducted to deeper depths. Few high-pressure experimental studies3,4,5 have addressed this problem and therefore metamorphic decarbonation in subduction zones remains largely unquantified, despite its importance to arc magmatism, palaeoatmospheric CO2 concentrations and the global carbon cycle6. Here we present computed phase equilibria to quantify the evolution of CO2 and H2O through the subduction-zone metamorphism of carbonate-bearing marine sediments (which are considered to be a major source for CO2 released by arc volcanoes6). Our analysis indicates that siliceous limestones undergo negligible devolatilization under subduction-zone conditions. Along high-temperature geotherms clay-rich marls completely devolatilize before reaching the depths at which arc magmatism is generated, but along low-temperature geotherms, they undergo virtually no devolatilization. And from 80 to 180 km depth, little devolatilization occurs for all carbonate-bearing marine sediments. Infiltration of H2O-rich fluids therefore seems essential to promote subarc decarbonation of most marine sediments. In the absence of such infiltration, volatiles retained within marine sediments may explain the apparent discrepancy between subducted and volcanic volatile fluxes and represent a mechanism for return of carbon to the Earth's mantle.

Suggested Citation

  • D. M. Kerrick & J. A. D. Connolly, 2001. "Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle," Nature, Nature, vol. 411(6835), pages 293-296, May.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6835:d:10.1038_35077056
    DOI: 10.1038/35077056
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35077056
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35077056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryosuke Oyanagi & Atsushi Okamoto, 2024. "Subducted carbon weakens the forearc mantle wedge in a warm subduction zone," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6835:d:10.1038_35077056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.