IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v410y2001i6831d10.1038_35073627.html
   My bibliography  Save this article

Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability

Author

Listed:
  • Hai Rao

    (California Institute of Technology)

  • Frank Uhlmann

    (Imperial Cancer Research Fund)

  • Kim Nasmyth

    (Research Institute of Molecular Pathology)

  • Alexander Varshavsky

    (California Institute of Technology)

Abstract

Cohesion between sister chromatids is established during DNA replication and depends on a protein complex called cohesin1,2,3,4,5,6,7. At the metaphase–anaphase transition in the yeast Saccharomyces cerevisiae, the ESP1-encoded protease separin cleaves SCC1, a subunit of cohesin with a relative molecular mass of 63,000 (Mr 63K)8. The resulting 33K carboxy-terminal fragment of SCC1 bears an amino-terminal arginine—a destabilizing residue in the N-end rule9. Here we show that the SCC1 fragment is short-lived (t1/2 ≈ 2 min), being degraded by the ubiquitin/proteasome-dependent N-end rule pathway. Overexpression of a long-lived derivative of the SCC1 fragment is lethal. In ubr1Δ cells, which lack the N-end rule pathway9, we found a highly increased frequency of chromosome loss. The bulk of increased chromosome loss in ubr1Δ cells is caused by metabolic stabilization of the ESP1-produced SCC1 fragment. This fragment is the first physiological substrate of the N-end rule pathway that is targeted through its N-terminal residue. A number of yeast proteins bear putative cleavage sites for the ESP1 separin, suggesting other physiological substrates and functions of the N-end rule pathway.

Suggested Citation

  • Hai Rao & Frank Uhlmann & Kim Nasmyth & Alexander Varshavsky, 2001. "Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability," Nature, Nature, vol. 410(6831), pages 955-959, April.
  • Handle: RePEc:nat:nature:v:410:y:2001:i:6831:d:10.1038_35073627
    DOI: 10.1038/35073627
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35073627
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35073627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verna Van & Janae B. Brown & Corin R. O’Shea & Hannah Rosenbach & Ijaz Mohamed & Nna-Emeka Ejimogu & Toan S. Bui & Veronika A. Szalai & Kelly N. Chacón & Ingrid Span & Fangliang Zhang & Aaron T. Smith, 2023. "Iron-sulfur clusters are involved in post-translational arginylation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:410:y:2001:i:6831:d:10.1038_35073627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.