IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v410y2001i6830d10.1038_35071039.html
   My bibliography  Save this article

Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies

Author

Listed:
  • Mohammed Ibn-Elhaj

    (ROLIC Research Ltd)

  • Martin Schadt

    (ROLIC Research Ltd)

Abstract

Light reflection from computer monitors, car dashboards and any other optical surface can impair the legibility of displays, degrade transmission of optical components and in some cases may even pose safety hazards. Antireflective coatings are therefore widely used, but existing antireflection technologies often perform sub-optimally or are expensive to implement. Here we present an alternative approach to antireflection coatings, based on an extension of our photo-aligning and photo-patterning technology for liquid-crystal displays1,2 (LCDs) and liquid-crystal polymer films with smooth surfaces3,4 to optical polymer films with controlled surface topologies. Nano- and micro-corrugated topologies are shown to result from optically induced monomer phase-separation on the polymer surfaces. The properties of the resulting films make them suitable high-performance and low-cost antireflection coatings for optical components of virtually any size, shape and material. Moreover, the approach can be used to form a wide range of other functional polymer thin films with isotropic as well as anisotropic topologies. For example, films can be produced whose optical birefringence exceeds that of the birefringence of the polymer material itself. These new films can also be used as diffractive thin films, diffusers, and directional reflectors which preserve light polarization, or as substrates for aligning liquid crystals to produce bright, low-power-consumption LCDs with integrated optical functions and memory.

Suggested Citation

  • Mohammed Ibn-Elhaj & Martin Schadt, 2001. "Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies," Nature, Nature, vol. 410(6830), pages 796-799, April.
  • Handle: RePEc:nat:nature:v:410:y:2001:i:6830:d:10.1038_35071039
    DOI: 10.1038/35071039
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35071039
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35071039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natarajan Shanmugam & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Pitchandi Kasiviswanathan & Narottam Das, 2020. "Anti-Reflective Coating Materials: A Holistic Review from PV Perspective," Energies, MDPI, vol. 13(10), pages 1-93, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:410:y:2001:i:6830:d:10.1038_35071039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.