Author
Listed:
- M. A. Rowe
(National Institute of Standards and Technology)
- D. Kielpinski
(National Institute of Standards and Technology)
- V. Meyer
(National Institute of Standards and Technology)
- C. A. Sackett
(National Institute of Standards and Technology)
- W. M. Itano
(National Institute of Standards and Technology)
- C. Monroe
(University of Michigan)
- D. J. Wineland
(National Institute of Standards and Technology)
Abstract
Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away1. Einstein, Podolsky and Rosen2 used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others constructed mathematical inequalities whereby experimental tests could distinguish between quantum mechanics and local realistic theories1,3,4,5. Many experiments1,6,7,8,9,10,11,12,13,14,15 have since been done that are consistent with quantum mechanics and inconsistent with local realism. But these conclusions remain the subject of considerable interest and debate, and experiments are still being refined to overcome ‘loopholes’ that might allow a local realistic interpretation. Here we have measured correlations in the classical properties of massive entangled particles (9Be+ ions): these correlations violate a form of Bell's inequality. Our measured value of the appropriate Bell's ‘signal’ is 2.25 ± 0.03, whereas a value of 2 is the maximum allowed by local realistic theories of nature. In contrast to previous measurements with massive particles, this violation of Bell's inequality was obtained by use of a complete set of measurements. Moreover, the high detection efficiency of our apparatus eliminates the so-called ‘detection’ loophole.
Suggested Citation
M. A. Rowe & D. Kielpinski & V. Meyer & C. A. Sackett & W. M. Itano & C. Monroe & D. J. Wineland, 2001.
"Experimental violation of a Bell's inequality with efficient detection,"
Nature, Nature, vol. 409(6822), pages 791-794, February.
Handle:
RePEc:nat:nature:v:409:y:2001:i:6822:d:10.1038_35057215
DOI: 10.1038/35057215
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6822:d:10.1038_35057215. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.