IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6820d10.1038_35054508.html
   My bibliography  Save this article

Rapid collisional evolution of comets during the formation of the Oort cloud

Author

Listed:
  • S. Alan Stern

    (Southwest Research Institute)

  • Paul R. Weissman

    (Jet Propulsion Laboratory)

Abstract

The Oort cloud1 of comets was formed by the ejection of icy planetesimals from the region of giant planets—Jupiter, Saturn, Uranus and Neptune—during their formation2. Dynamical simulations3,4 have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 104 to 105 AU from the Sun (1 AU is the average Earth–Sun distance). All of the models constructed until now simulate formation of the Oort cloud using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

Suggested Citation

  • S. Alan Stern & Paul R. Weissman, 2001. "Rapid collisional evolution of comets during the formation of the Oort cloud," Nature, Nature, vol. 409(6820), pages 589-591, February.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6820:d:10.1038_35054508
    DOI: 10.1038/35054508
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35054508
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35054508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6820:d:10.1038_35054508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.