IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6817d10.1038_35051731.html
   My bibliography  Save this article

Combinatorial and computational challenges for biocatalyst design

Author

Listed:
  • Frances H. Arnold

    (California Institute of Technology)

Abstract

Nature provides a fantastic array of catalysts extremely well suited to supporting life, but usually not so well suited for technology. Whether biocatalysis will have a significant technological impact depends on our finding robust routes for tailoring nature's catalysts or redesigning them anew. Laboratory evolution methods are now used widely to fine-tune the selectivity and activity of enzymes. The current rapid development of these combinatorial methods promises solutions to more complex problems, including the creation of new biosynthetic pathways. Computational methods are also developing quickly. The marriage of these approaches will allow us to generate the efficient, effective catalysts needed by the pharmaceutical, food and chemicals industries and should open up new opportunities for producing energy and chemicals from renewable resources.

Suggested Citation

  • Frances H. Arnold, 2001. "Combinatorial and computational challenges for biocatalyst design," Nature, Nature, vol. 409(6817), pages 253-257, January.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051731
    DOI: 10.1038/35051731
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35051731
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35051731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y.-H. Percival Zhang & Jonathan R. Mielenz, 2011. "Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy," Energies, MDPI, vol. 4(2), pages 1-22, January.
    2. Le Quang Anh Tuan, 2018. "Rational protein design for enhancing thermal stability of industrial enzymes," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 3-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.