Author
Listed:
- Eyal Nir
(The Hebrew University of Jerusalem)
- Karl Kleinermanns
(Institut für Physikalische Chemie und Elektrochemie, Heinrich Heine Universität)
- Mattanjah S. de Vries
(The Hebrew University of Jerusalem
Department of Chemistry and Biochemistry University of California)
Abstract
The two intertwined strands of DNA are held together through base pairing—the formation of hydrogen bonds between bases located opposite each other on the two strands. DNA replication and transcription involve the breaking and re-forming of these hydrogen bonds, but it is difficult to probe these processes directly. For example, conventional DNA spectroscopy1,2,3 is dominated by solvent interactions, crystal modes and collective modes of the DNA backbone; gas-phase studies, in contrast, can in principle measure interactions between individual molecules in the absence of external effects, but require the vaporization of the interacting species without thermal degradation4,5,6,7,8,9. Here we report the generation of gas-phase complexes comprising paired bases, and the spectroscopic characterization of the hydrogen bonding in isolated guanine–cytosine (G–C) and guanine–guanine (G–G) base pairs. We find that the gas-phase G–C base pair adopts a single configuration, which may be Watson–Crick, whereas G–G exists in two different configurations, and we see evidence for proton transfer in the G–C pair, an important step in radiation-induced DNA damage pathways10. Interactions between different bases and between bases and water molecules can also be characterized by our approach, providing stringent tests for high-level ab initio computations that aim to elucidate the fundamental aspects of nucleotide interactions11,12,13.
Suggested Citation
Eyal Nir & Karl Kleinermanns & Mattanjah S. de Vries, 2000.
"Pairing of isolated nucleic-acid bases in the absence of the DNA backbone,"
Nature, Nature, vol. 408(6815), pages 949-951, December.
Handle:
RePEc:nat:nature:v:408:y:2000:i:6815:d:10.1038_35050053
DOI: 10.1038/35050053
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6815:d:10.1038_35050053. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.