IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6813d10.1038_35047064.html
   My bibliography  Save this article

Mitochondrial genome variation and the origin of modern humans

Author

Listed:
  • Max Ingman

    (Rudbeck Laboratory, University of Uppsala)

  • Henrik Kaessmann

    (Max Planck Institute for Evolutionary Anthropology)

  • Svante Pääbo

    (Max Planck Institute for Evolutionary Anthropology)

  • Ulf Gyllensten

    (Rudbeck Laboratory, University of Uppsala)

Abstract

The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination1, high substitution rate2 and maternal mode of inheritance3. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations4 causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable5. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis6, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region7 in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.

Suggested Citation

  • Max Ingman & Henrik Kaessmann & Svante Pääbo & Ulf Gyllensten, 2000. "Mitochondrial genome variation and the origin of modern humans," Nature, Nature, vol. 408(6813), pages 708-713, December.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6813:d:10.1038_35047064
    DOI: 10.1038/35047064
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35047064
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35047064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhaba Amatya, 2021. "DNA Barcoding of Cyprinid Fish Chagunius chagunio Hamilton,1822 from Phewa Lake, Nepal," International Journal of Biology, Canadian Center of Science and Education, vol. 11(4), pages 1-88, December.
    2. Owen Alexander Higgins & Alessandra Modi & Costanza Cannariato & Maria Angela Diroma & Federico Lugli & Stefano Ricci & Valentina Zaro & Stefania Vai & Antonino Vazzana & Matteo Romandini & He Yu & Fr, 2024. "Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ricardo Kanitz & Elsa G Guillot & Sylvain Antoniazza & Samuel Neuenschwander & Jérôme Goudet, 2018. "Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    4. McEvoy, Brian P. & Visscher, Peter M., 2009. "Genetics of human height," Economics & Human Biology, Elsevier, vol. 7(3), pages 294-306, December.
    5. Jody Hey, 2005. "On the Number of New World Founders: A Population Genetic Portrait of the Peopling of the Americas," PLOS Biology, Public Library of Science, vol. 3(6), pages 1-1, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6813:d:10.1038_35047064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.