IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6812d10.1038_35046114.html
   My bibliography  Save this article

Coenzyme Q is an obligatory cofactor for uncoupling protein function

Author

Listed:
  • Karim S. Echtay
  • Edith Winkler
  • Martin Klingenberg

Abstract

Uncoupling proteins (UCPs) are thought to be intricately controlled uncouplers1,2,3 that are responsible for the futile dissipation of mitochondrial chemiosmotic gradients, producing heat rather than ATP. They occur in many animal and plant cells4,5,6,7,8,9 and form a subfamily of the mitochondrial carrier family10. Physiological uncoupling of oxidative phosphorylation must be strongly regulated to avoid deterioration of the energy supply and cell death, which is caused by toxic uncouplers. However, an H+ transporting uncoupling function is well established only for UCP1 from brown adipose tissue2,8,9,11, and the regulation of UCP1 by fatty acids, nucleotides and pH remains controversial2,12,13,14. The failure of UCP1 expressed in Escherichia coli inclusion bodies to carry out fatty-acid-dependent H+ transport activity inclusion bodies15 made us seek a native UCP cofactor. Here we report the identification of coenzyme Q (ubiquinone) as such a cofactor. On addition of CoQ10 to reconstituted UCP1 from inclusion bodies, fatty-acid-dependent H+ transport reached the same rate as with native UCP1. The H+ transport was highly sensitive to purine nucleotides, and activated only by oxidized but not reduced CoQ. H+ transport of native UCP1 correlated with the endogenous CoQ content.

Suggested Citation

  • Karim S. Echtay & Edith Winkler & Martin Klingenberg, 2000. "Coenzyme Q is an obligatory cofactor for uncoupling protein function," Nature, Nature, vol. 408(6812), pages 609-613, November.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6812:d:10.1038_35046114
    DOI: 10.1038/35046114
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35046114
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35046114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6812:d:10.1038_35046114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.