IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6811d10.1038_35044075.html
   My bibliography  Save this article

Integration of target and body-part information in the premotor cortex when planning action

Author

Listed:
  • Eiji Hoshi

    (Tohoku University School of Medicine)

  • Jun Tanji

    (Tohoku University School of Medicine
    The Core Research for Evolutional Science and Technology Program)

Abstract

To plan an action, we must first select an object to act on and the body part (or parts) to use to accomplish our intention. To plan the motor task of reaching, we specify both the target to reach for and the arm to use. In the process of planning and preparing a motor task, information about the motor target and the arm to use must be integrated before a motor program can be formulated to generate the appropriate limb movement. One of the structures in the brain that is probably involved in integrating these two sets of information is the premotor area in the cerebral cortex of primates1,2,3,4,5. The lateral sector of the dorsal premotor cortex is known to receive both visual and somatosensory input6,7,8, and we show here that neurons in this area gather information about both the target and the body part, while subsequent activity specifies the planned action.

Suggested Citation

  • Eiji Hoshi & Jun Tanji, 2000. "Integration of target and body-part information in the premotor cortex when planning action," Nature, Nature, vol. 408(6811), pages 466-470, November.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6811:d:10.1038_35044075
    DOI: 10.1038/35044075
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35044075
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35044075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Pilacinski & Melanie Wallscheid & Axel Lindner, 2018. "Human posterior parietal and dorsal premotor cortex encode the visual properties of an upcoming action," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-20, October.
    2. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6811:d:10.1038_35044075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.