IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6810d10.1038_35042575.html
   My bibliography  Save this article

Imagery neurons in the human brain

Author

Listed:
  • Gabriel Kreiman

    (Computation and Neural Systems Program, California Institute of Technology, 139-74)

  • Christof Koch

    (Computation and Neural Systems Program, California Institute of Technology, 139-74)

  • Itzhak Fried

    (University of California at Los Angeles, School of Medicine)

Abstract

Vivid visual images can be voluntarily generated in our minds in the absence of simultaneous visual input. While trying to count the number of flowers in Van Gogh's Sunflowers, understanding a description or recalling a path, subjects report forming an image in their “mind's eye”1. Whether this process is accomplished by the same neuronal mechanisms as visual perception has long been a matter of debate1,2,3. Evidence from functional imaging1,4,5,6,7,8, psychophysics1,9, neurological studies2 and monkey electrophysiology10,11,12 suggests a common process, yet there are patients with deficits in one but not the other3,13. Here we directly investigated the neuronal substrates of visual recall by recording from single neurons in the human medial temporal lobe14,15 while the subjects were asked to imagine previously viewed images. We found single neurons in the hippocampus, amygdala, entorhinal cortex and parahippocampal gyrus that selectively altered their firing rates depending on the stimulus the subjects were imagining. Of the neurons that fired selectively during both vision and imagery, the majority (88%) had identical selectivity. Our study reveals single neuron correlates of volitional visual imagery in humans and suggests a common substrate for the processing of incoming visual information and visual recall.

Suggested Citation

  • Gabriel Kreiman & Christof Koch & Itzhak Fried, 2000. "Imagery neurons in the human brain," Nature, Nature, vol. 408(6810), pages 357-361, November.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042575
    DOI: 10.1038/35042575
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35042575
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35042575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Hansen, Matheus & Protachevicz, Paulo R. & Iarosz, Kelly C. & Caldas, Iberê L. & Batista, Antonio M. & Macau, Elbert E.N., 2022. "Dynamics of uncoupled and coupled neurons under an external pulsed current," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.