IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6810d10.1038_35042534.html
   My bibliography  Save this article

Mean-field cluster model for the critical behaviour of ferromagnets

Author

Listed:
  • Ralph V. Chamberlin

    (Arizona State University)

Abstract

Two separate theories are often used to characterize the paramagnetic properties of ferromagnetic materials. At temperatures T well above the Curie temperature, TC (where the transition from paramagnetic to ferromagnetic behaviour occurs), classical mean-field theory1 yields the Curie–Weiss law for the magnetic susceptibility: χ( T) ∝ 1/(T - Θ), where Θ is the Weiss constant. Close to TC, however, the standard mean-field approach breaks down so that better agreement with experimental data is provided by critical scaling theory2,3: χ(T) ∝ 1/(T - TC)γ, where γ is a scaling exponent. But there is no known model capable of predicting the measured values of γ nor its variation among different substances4. Here I use a mean-field cluster model5 based on finite-size thermostatistics6,7 to extend the range of mean-field theory, thereby eliminating the need for a separate scaling regime. The mean-field approximation is justified by using a kinetic-energy term to maintain the microcanonical ensemble8. The model reproduces the Curie–Weiss law at high temperatures, but the classical Weiss transition at TC = Θ is suppressed by finite-size effects. Instead, the fraction of clusters with a specific amount of order diverges at T C, yielding a transition that is mathematically similar to Bose–Einstein condensation. At all temperatures above TC, the model matches the measured magnetic susceptibilities of crystalline EuO, Gd, Co and Ni, thus providing a unified picture for both the critical-scaling and Curie–Weiss regimes.

Suggested Citation

  • Ralph V. Chamberlin, 2000. "Mean-field cluster model for the critical behaviour of ferromagnets," Nature, Nature, vol. 408(6810), pages 337-339, November.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042534
    DOI: 10.1038/35042534
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35042534
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35042534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6810:d:10.1038_35042534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.