IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6805d10.1038_35037572.html
   My bibliography  Save this article

The population genetics of ecological specialization in evolving Escherichia coli populations

Author

Listed:
  • Vaughn S. Cooper

    (Center for Microbial Ecology, Michigan State University)

  • Richard E. Lenski

    (Center for Microbial Ecology, Michigan State University)

Abstract

When organisms adapt genetically to one environment, they may lose fitness in other environments1,2,3,4. Two distinct population genetic processes can produce ecological specialization—mutation accumulation and antagonistic pleiotropy5,6,7,8. In mutation accumulation, mutations become fixed by genetic drift in genes that are not maintained by selection; adaptation to one environment and loss of adaptation to another are caused by different mutations. Antagonistic pleiotropy arises from trade-offs, such that the same mutations that are beneficial in one environment are detrimental in another. In general, it is difficult to distinguish between these processes5,6,7,8. We analysed the decay of unused catabolic functions in 12 lines of Escherichia coli propagated on glucose for 20,000 generations9,10. During that time, several lines evolved high mutation rates11. If mutation accumulation is important, their unused functions should decay more than the other lines, but no significant difference was observed. Moreover, most catabolic losses occurred early in the experiment when beneficial mutations were being rapidly fixed, a pattern predicted by antagonistic pleiotropy. Thus, antagonistic pleiotropy appears more important than mutation accumulation for the decay of unused catabolic functions in these populations.

Suggested Citation

  • Vaughn S. Cooper & Richard E. Lenski, 2000. "The population genetics of ecological specialization in evolving Escherichia coli populations," Nature, Nature, vol. 407(6805), pages 736-739, October.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6805:d:10.1038_35037572
    DOI: 10.1038/35037572
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35037572
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35037572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    2. Richard E. Lenski & Terence C. Burnham, 2018. "Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making," Journal of Bioeconomics, Springer, vol. 20(1), pages 107-124, April.
    3. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6805:d:10.1038_35037572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.