IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6802d10.1038_35030148.html
   My bibliography  Save this article

A chemical switch for inhibitor-sensitive alleles of any protein kinase

Author

Listed:
  • Anthony C. Bishop

    (Princeton University)

  • Jeffrey A. Ubersax

    (University of California San Francisco)

  • Dejah T. Petsch

    (Yale University)

  • Dina P. Matheos

    (Department of Molecular Biology Princeton University)

  • Nathanael S. Gray

    (Genomics Institute of the Novartis Research Foundation)

  • Justin Blethrow

    (University of California San Francisco)

  • Eiji Shimizu

    (Department of Molecular Biology Princeton University)

  • Joe Z. Tsien

    (Department of Molecular Biology Princeton University)

  • Peter G. Schultz

    (Genomics Institute of the Novartis Research Foundation)

  • Mark D. Rose

    (Department of Molecular Biology Princeton University)

  • John L. Wood

    (Yale University)

  • David O. Morgan

    (University of California San Francisco)

  • Kevan M. Shokat

    (Princeton University
    University of California San Francisco)

Abstract

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry1. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases2. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants3. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.

Suggested Citation

  • Anthony C. Bishop & Jeffrey A. Ubersax & Dejah T. Petsch & Dina P. Matheos & Nathanael S. Gray & Justin Blethrow & Eiji Shimizu & Joe Z. Tsien & Peter G. Schultz & Mark D. Rose & John L. Wood & David , 2000. "A chemical switch for inhibitor-sensitive alleles of any protein kinase," Nature, Nature, vol. 407(6802), pages 395-401, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030148
    DOI: 10.1038/35030148
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35030148
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35030148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Galanti & Martina Peritore & Robert Gnügge & Elda Cannavo & Johannes Heipke & Maria Dilia Palumbieri & Barbara Steigenberger & Lorraine S. Symington & Petr Cejka & Boris Pfander, 2024. "Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Michael DeBerardine & Gregory T. Booth & Philip P. Versluis & John T. Lis, 2023. "The NELF pausing checkpoint mediates the functional divergence of Cdk9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.